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Abstract

I present data from 21 population inventory studies — 20 of them on bears — that relied on
the noninvasive collection of hair, and review the methods that were used to prevent
genetic errors in these studies. These methods were designed to simultaneously minimize
errors (which can bias estimates of abundance) and per-sample analysis effort (which can
reduce the precision of estimates by limiting sample size). A variety of approaches were
used to probe the reliability of the empirical data, producing a mean, per-study estimate of
no more than one undetected error in either direction (too few or too many individuals
identified in the laboratory). For the type of samples considered here (plucked hair sam-
ples), the gain or loss of individuals in the laboratory can be reduced to a level that is incon-
sequential relative to the more universal sources of bias and imprecision that can affect
mark–recapture studies, assuming that marker systems are selected according to stated
guidelines, marginal samples are excluded at an early stage, similar pairs of genotypes are
scrutinized, and laboratory work is performed with skill and care.
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Introduction

 

Noninvasive, DNA-based techniques have become a
routine approach to population inventory for black (

 

Ursus
americanus

 

) and brown bears (

 

U. arctos

 

 including grizzlies;
Taberlet 

 

et al

 

. 1997; Woods 

 

et al

 

. 1999; Mowat & Strobeck
2000; Poole 

 

et al

 

. 2001; Boulanger 

 

et al

 

. 2003) and have shown
a great deal of promise, if not outright success, in many
other species (Palsbøll 

 

et al

 

. 1997; Reed 

 

et al

 

. 1997; Kohn

 

et al

 

. 1999; Ernest 

 

et al

 

. 2000; Sloane 

 

et al

 

. 2000; Lucchini 

 

et al

 

.
2002; Mowat & Paetkau 2002). These techniques have been
used to produce dozens of formal, mark–recapture esti-
mates of abundance, to the extent that routine studies,
which lack the novelty required by the primary scientific
literature, are generally published at the level of internal
agency reports.

DNA-based inventory methods offer solutions to some
sources of error associated with traditional methods (e.g.
loss of ‘marks’ in mark–recapture studies; see discussion
in Palsbøll 1999), and have no impact on other sources
of error (e.g. violation of assumptions in mark–recapture

models; Seber 1982), but they also introduce two new
sources of potential error. First, too few individuals may be
identified if the genetic markers being used lack the vari-
ability (power) necessary to produce unique genotypes for
each individual that is sampled (Woods 

 

et al

 

. 1999; Mills

 

et al

 

. 2000; Waits 

 

et al

 

. 2001; the ‘shadow effect’). Second,
inconsistencies in the genotypes recorded for different
samples taken from the same individual can result in
the genetic identification of an excess of individuals
(Taberlet 

 

et al

 

. 1996; Gagneux 

 

et al

 

. 1997; Taberlet 

 

et al

 

. 1997;
Goossens 

 

et al

 

. 1998; Taberlet 

 

et al

 

. 1999; Woods 

 

et al

 

. 1999;
Miller 

 

et al

 

. 2002).
When Woods 

 

et al

 

. (1999) performed the first large-scale,
mark–recapture inventory of a brown bear population,
they recognized these two sources of error and developed
methods to control them. Specifically, they ensured that
their marker system had adequate power by selecting the
most variable markers from a larger set that had been
tested on the study population, and they developed a
match statistic that allowed for the fact that many of
the individuals sampled were likely to be close relatives.
They dealt with genotyping error by scrutinizing and
selectively reanalysing pairs of samples whose genotypes
were highly similar, but not identical, reasoning that such
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near-matches might result from inconsistencies in the gen-
otypes recorded for different samples taken from the same
individual.

The error-prevention methods employed by Woods

 

et al

 

. (1999) were not codified, could not be validated by
reference to empirical data, and were not described in
detail. The lack of a published description of a refined, valid-
ated and detailed error-prevention protocol has facilitated
the growth of a remarkably rich literature on the two
sources of error that are unique to DNA-based inventories
(above). Most recently, some noninvasive genetic surveys
have fallen under such intense scrutiny (e.g. Stokstad 2002)
that wildlife managers may become unwilling or unable to
apply these methods unless more evidence is presented to
support the capacity of such surveys to produce reliable
data on a routine basis.

The cautionary literature that has grown up around
DNA-based population inventory makes little reference to
empirical data from the types of large-scale applications
whose value is under question. However, at the same time
that the academic community has been critically exam-
ining these methods for their potential, the wildlife
management community — faced with urgent needs for
information, and often lacking viable alternatives for col-
lecting that information — has moved on to the widespread
application of genetic methods, generating a large quantity
of empirical data in the process.

Without denying the value of theoretical arguments and
simulated data, there are good reasons to examine empir-
ical evidence when assessing the prevalence of errors in
DNA-based inventories. For example, the degree of related-
ness has a large impact on the probability that a pair of
individuals will have the same genotype (Woods 

 

et al

 

.
1999), but one does not know the distribution of degrees of
relatedness in one’s study populations. A straightforward
solution to this problem is to examine data from collections
of known individuals drawn from similar populations,
and to ask how often similar or identical genotypes are
seen in practice (Waits 

 

et al

 

. 2001). Similarly, while some
sources of genotyping error have been clearly identified
(Taberlet 

 

et al

 

. 1996; Gagneux 

 

et al

 

. 1997; Gossens 

 

et al

 

.
1998), it remains unclear what the relative and absolute fre-
quencies of different types of errors are with the type and
quality of samples that are collected in inventory projects.
Examining the errors that have been found in applied
projects is an informative approach to clarifying these
issues.

The purpose of this study is to describe a refined and
codified version of Woods 

 

et al

 

.

 

′

 

s (1999) error-prevention
methods, and to use a large body of empirical data to esti-
mate the capacity of the described methods to yield reliable
results. The empirical data will be drawn from 21 recent
hair-based inventories of black bear, brown bear and pine
marten (

 

Martes americanus

 

) populations to which the

described methods were applied under my supervision
(Table 1). This work deals specifically with preventing
errors, but the field and laboratory methods used in these
studies are in keeping with published reports (Woods 

 

et al

 

.
1999; Mowat & Strobeck 2000; Poole 

 

et al

 

. 2001; Mowat &
Paetkau 2002).

The similarity of pairs of genotypes (meaning multi-
locus, microsatellite genotypes unless otherwise specified)
comes up repeatedly in the following discussion, so a
convention will be adopted of referring to samples with
identical genotypes for the relevant markers as zero-
mismatch-pairs (0MM-pairs), while pairs of samples with
genotypes that match at all but one marker will be called 1MM-
pairs, and so on out to 3MM-pairs, which differ at three of
the markers for which the samples hold data in common.

 

Methods

 

Selection of markers

 

It is only through retrospective analysis that specific
guidelines, such as those suggested later in this study, can
be developed. In order to generate data that could form the
basis for such an analysis, we developed an 

 

ad hoc

 

 marker-
selection guideline based on informal explorations of data.
This guideline was that a suite of six microsatellite markers
would be used when the mean expected heterozygosity
(

 

H

 

E

 

) for those markers was between 0.7 and 0.8, and that a
larger or smaller number of markers should be considered
outside this range. Power requirements depend on the
number of individuals for whom unique genotypes must
be created, so some drift from these basic guidelines was
allowed based on the expected number of individuals that
were likely to be sampled in a given project (

 

n

 

). In some
projects, 

 

n

 

 exceeded expectation, especially when data
were added from new field seasons. In such cases, an
additional microsatellite or gender marker was analysed
retroactively for all samples.

In most projects, marker-selection was facilitated by
the availability of approximately 30 samples from live-
captured individuals. These samples were normally analysed
using 12–15 microsatellite markers, which were then
ranked by 

 

H

 

E

 

. If the best five markers had 

 

H

 

E

 

 > 0.8 they
were selected, but otherwise larger suites of markers were
tested until a satisfactory set was identified. In the major-
ity of projects, a six-locus suite of markers was selected
(Table 1).

 

Initial genetic analysis

 

The first pass at genotyping used standard laboratory
methods [polymerase chain reaction (PCR), electrophoresis]
that have been described many times. In some studies,
a species-specific marker (microsatellite or mtDNA) was
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Table 1

 

Summary of 21 noninvasive, population inventory projects that employed genetic analysis of hair samples, sorted by the number and variability of the microsatellite markers
that were used. The number of samples and number of genetically defined individuals are summarized by whether their genotypes were complete for all markers (

 

l

 

) or missing data for
one (

 

l-

 

1) or two (

 

l-

 

2) markers; 

 

′

 

similar genotypes’ refers to the number of pairs of genotypes in the final data set (after error-checking) that matched at all but one (1MM), two (2MM) or
three (3MM) of the markers for which data were available

Project Species Contact for further information
Markers (number: names, most 
variable first)

 

H

 

E

 

No. of samples
No. of 
individuals Similar genotypes

 

l l-

 

1

 

l-

 

2

 

l l-

 

1

 

l-

 

2 1MM 2MM 3MM

Owikeno*

 

U. arctos

 

Stefan Himmer, Arctos Wildlife, Hagensborg, BC 7: 

 

G10B, G10X, G1A, G10L, G1D, G10C, G10J

 

0.67 233 27 14 96 9 2 3 13 116
Slocan

 

M. ameri.

 

Garth Mowat, Aurora Wildlife, Crescent Valley, BC 6: 

 

Ma1, Ma2, Ma8, Ma10, Ma18, Ma1

 

0.67 113 21 1 80 8 0 1 38 238
Big Cypress

 

U. ameri.

 

Thomas Eason, Florida Fish & Wildlife, Tallahassee, FL 6: 

 

G10L, G10B, G1D, G10J, G10P, G10H

 

0.71 215 8 1 42 0 0 0 3 32
Ocala†

 

U. ameri.

 

Thomas Eason, Florida Fish & Wildlife, Tallahassee, FL 6: 

 

G1A, G1D, G10H, MU59, G10B, MU50

 

0.71 1695 21 0 223 0 0 6 82 766
Eglin†

 

U. ameri.

 

Thomas Eason, Florida Fish & Wildlife, Tallahassee, FL 6: 

 

G10M, G1D, G10L, G10X, G10B, G1A

 

0.72 266 17 2 63 0 0 1 9 72
Bowron

 

U. arctos

 

Garth Mowat, Aurora Wildlife, Crescent Valley, BC 6: 

 

G1D, G10B, G10J, G1A, G10L, G10M

 

0.72 188 5 0 53 0 0 1 2 23
St. John’s

 

U. ameri.

 

Thomas Eason, Florida Fish & Wildlife, Tallahassee, FL 6: 

 

MU59, G1A, G1D, G10H, MU50, G10B

 

0.73 282 9 1 33 0 0 0 2 14
Osceola

 

U. ameri.

 

Thomas Eason, Florida Fish & Wildlife, Tallahassee, FL 6: 

 

G10H, G10B, G1D, G1A, MU50, MU59

 

0.74 224 5 1 64 2 0 0 3 47
Parsnip G

 

U. arctos

 

Garth Mowat, Aurora Wildlife, Crescent Valley, BC 6: 

 

G10B, G1D, G1A, G10J, G10M, G10L

 

0.75 864 26 11 267 4 0 4 59 628
Purcell

 

U. arctos

 

Michael Proctor, Birchdale Ecological, Kaslo, BC 6: 

 

G10B, G1A, G1D, G10M, G10P, G10J

 

0.76 164 3 1 29 0 0 0 1 6
New Jersey†

 

U. ameri.

 

Kelsey Burgess, Division of Fish & Game, Hampton, NJ 6: 

 

G10P, G10L, MU50, G10J, MU59, G1D

 

0.76 551 7 0 350 3 0 11 119 868
Apalachicola

 

U. ameri.

 

Thomas Eason, Florida Fish & Wildlife, Tallahassee, FL 6: 

 

G10X, G1A, G10L, G1D, G10M, G10B

 

0.76 244 3 0 40 0 0 0 2 22
SW MT

 

U. ameri.

 

Rick Mace, Department Fish Wildlife & Parks, Kalispell, MT 6: 

 

G10J, G10L, G10H, MU59, G10P, G1D

 

0.76 310 5 3 158 2 1 3 20 205
Taku G

 

U. arctos

 

Kimberley Heinemeyer, Round River Cons. Stu., SLC, UT 6: 

 

MU59, G10B, G1D, G1A, G10X, G10J

 

0.77 180 24 4 100 0 0 2 11  57
Taku B

 

U. ameri.

 

Kimberley Heinemeyer, Round River Cons. Stu., SLC, UT 6: 

 

G10X, G10J, G1A, G10B, G1D, MU59

 

0.78 63 6 0 45 0 0 0 2 6
Hoopa

 

U. ameri.

 

Mark Higley, Hoopa Tribal Forestry, Hoopa, CA 6: 

 

G10J, MU59, G10H, G10L, G10M, G10P

 

0.78 156 56 1 113 11 0 0 8 102
West Slope B*

 

U. ameri.

 

John Woods, West Slopes Bear Project, Revelstoke, BC 6: 

 

G10X, G10L, G10C, G10B, G1D, G1A

 

0.80 747 34 0 367 9 0 0 31 470
Minnesota

 

U. ameri.

 

Kristina Timmerman, U. of Minnesota, St Paul, MN 5: 

 

G10M, G10L, G10C, G10B, G1A

 

0.79 238 22 0 91 0 0 2 18  174
Oregon

 

U. ameri.

 

Dave Immell, Department Fish and Wildlife, Portland, OR 5: 

 

G10P, G10J, G10M, G10H, G10

 

0.81 83 1 0 39 0 0 0 2 29
Swan

 

U. ameri.

 

Rick Mace, Department Fish Wildlife & Parks, Kalispell, MT 5: 

 

G10H, G10J, G10X, MU59, G10M

 

0.83 353 8 0 199 2 0 1 29 447
Parsnip B

 

U. ameri.

 

Garth Mowat, Aurora Wildlife, Crescent Valley, BC 5: 

 

C10L, G10J, G10H, G10X, G10C

 

0.86 563 8 0 274 1 0 1 17 452
Mean or total 0.76 7732 316 40 2726 51 3 36 471 4774

*These projects include data from more than one field season, of which the first season’s data were analysed under the supervision of Curtis Strobeck at the University of Alberta. Samples from all 
seasons were made available during the error-checking phase of the combined, multiseason database.
†Gender data were included in the actual analysis of individuals in these projects, reducing the number of similar genotypes relative to the numbers reported here, which are based on microsatellite 
data alone.
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used to exclude samples from nontarget species (e.g.
Woods 

 

et al

 

. 1999), or a very robust marker (i.e. the micro-
satellite marker that amplified in the greatest proportion
of samples in earlier projects) was run first to exclude
poor quality samples with little prospect of producing
multilocus genotypes. However, the usual procedure was
to analyse each sample at all the chosen markers at the
same time, and in the same lane of an automated
sequencer. Single-locus genotypes that could not be scored
with high confidence (below) were attempted a second
time, using more genomic DNA in the PCR reaction (5 

 

µ

 

L
instead of 3 

 

µ

 

L in the initial reaction).
In order to prevent contamination of genomic DNA

samples with amplified DNA, we established an isolated
facility for amplified DNA, and enforced strict rules
governing the movement of people and materials between
facilities. Routine monitoring for contamination was based
on the use of extraction and PCR blanks, and records were
maintained for these control samples to provide quality
assurance.

In most projects, we were able to avoid completely the
typing or writing of sample numbers (and thus typograph-
ical errors) by building the laboratory database around the
field database. This allowed the direct printing of per-
manent, information-rich sample labels. Sample sheets for
automated sequencers were created from files that were
exported directly from the database. Similarly, the sample
information present in sample sheets was used to allow
direct import of genetic results back into the database,
while confirming that the correct data were associated
with the correct record.

We used a convention of recording results in which we
had a high degree of confidence with 3-digit numbers (e.g.
allele 182), but removed the first digit when we had lower
confidence in the results (i.e. 82). All downstream com-
puter analyses were designed to treat 2-digit numbers as
missing data. Each worker became expert at knowing
when 3-digit numbers were merited by starting with very
conservative practices (i.e. assigning many 2-digit num-
bers) and keeping track of every inconsistency that was
detected by reanalysis. This record of inconsistencies pro-
vided a feedback loop that allowed technicians to refine
their skills. While the lack of discrete rules for assigning 3-
digit allele scores is frustrating, it is difficult to codify the
subtle visual cues, such as the relative intensity of dinucle-
otide shadow peaks, that an expert technician uses to
assess data quality. Certainly signal intensity alone cannot
form an adequate basis for decision making.

In the current projects (Table 1), alleles were scored
automatically using category definitions in a Genotyper
(Applied Biosystems) file, and then scrutinized separately
by two people, at least one of whom was highly experi-
enced, before being imported (not manually entered) into
a database file.

 

Quality control

 

One approach to confirming genotypes is to repeat the
analysis of all data many times (Taberlet 

 

et al

 

. 1996;
Gagneux 

 

et al

 

. 1997). This ‘multiple tubes’ approach can be
argued against on two grounds. First, increasing labor-
atory costs by any multiple would have a devastating impact
on the practical utility of the methods. Second, there is a
common misconception that the multiple tubes approach
is equivalent to multiple ‘standard’ analyses. This is
not the case, because the multiple tubes approach neces-
sitates that the available DNA be diluted across a greater
number of tubes, thus increasing the per-tube probability
of encountering the errors and amplification failures that
are associated with an inadequate quantity of DNA (Taberlet

 

et al

 

. 1996; Gagneux 

 

et al

 

. 1997; Morin 

 

et al

 

. 2001). Therefore,
measuring the gain in quality that comes from using mul-
tiple tubes, compared to a single tube with more DNA, is
more complex than it first appears.

We used an alternative approach, as follows: (1) DNA
was extracted from up to 10 guard hair roots as available;
(2) a large proportion of the sample (

 

∼

 

1/3) was used in the
first pass at genotyping, leaving a comfortable amount for
selective reanalysis or downstream analyses (e.g. gender);
(3) 2-digit allele scores were used liberally; (4) samples that
performed poorly were culled (below), along with samples
that showed evidence of three or more alleles, as expected
when hairs from two different animals are combined; (5)
similar genotypes were reanalysed selectively; and (6) all
errors (i.e. any change to a recorded 3-digit number) were
documented, and used to adjust practices at step 3. This
protocol involves the aggressive consumption of minute,
irreplaceable samples, so it requires the type of systemiza-
tion and control of laboratory procedures that eliminates
trivial errors, such as forgetting to add a reagent to a reac-
tion, or adding the wrong sample to a tube.

The critical parameter that determined the amount of
initial genotyping error allowed by our approach was the
point at which poor samples are culled (step 4). We used a
series of increasingly stringent thresholds for culling sam-
ples. During the first pass, any sample that did not produce
high-confidence (3-digit) genotypes for three or more
markers (four or more when using seven markers) was
culled before even making an attempt to improve 2-digit or
missing data. Following a round of reanalysis directed at
improving data for mid-quality samples, the threshold
was raised to a minimum of four (5) markers with high-
confidence genotypes. It was our experience that most
samples either produced complete data for all markers, or
were culled; only a small number of samples were missing
data for one or two markers (Table 1).

Because incomplete genotypes contain less information,
they have a higher degree of similarity to other samples,
especially other incomplete samples that are missing data
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for different markers. This meant that they invariably
needed to be reproduced, in part or in whole, under our
error-checking regime (below). Following error-checking,
samples that were missing data were considered on a case-
by-case basis — with visual reference to all of the raw data
available for the sample, and in discussion between two
people — and any sign of inconsistency was taken as
grounds for culling. Table 1 shows that 96% of samples
which escaped culling had complete genotypes, while only
0.5% of such samples were missing data from more than
a single marker. Note that, in practice, the sibling match
statistic (Woods 

 

et al

 

. 1999) did not inform decisions to
retain samples, because the combination of marker variabil-
ity and minimum requirements for complete data removed
samples with excessively high (

 

P

 

 > 0.05) values of this
statistic.

The error-checking involved scrutiny of all 1MM- and
2MM-pairs of genotypes, as identified by an exhaustive,
computer-based search. The first step of this scrutiny was
a confirmation that the raw data were accurately reflected
in the database, and any inconsistencies detected at this
stage were corrected and recorded, and were not pursued
further. If the genotypes were not reduced to 0MM-pairs
by visual scrutiny, then the markers causing the mismatch
were reamplified and reanalysed. When one or both geno-
types involved in a 2MM-pair were observed in multiple
samples, the reproduced genotypes (could be one or both
members of the pair) were not reanalysed. This means that
the protocol will not detect cases where identical, mult-
ilocus errors are replicated in multiple samples from the same
individual.

This error-checking protocol is not designed to detect
errors when only one sample has been collected from an
individual. This is not a concern in the context of a popula-
tion inventory project, because such a sample needs only to
have a unique genotype, not an accurate genotype, to iden-
tify 

 

n

 

 accurately. If the same genetic data were being used
for applications where the accuracy of genotypes was crit-
ical, such as studies of parentage, data quality could be
maximized by restricting the analysis to genotypes (indi-
viduals) that had been observed in multiple samples, or
allowance could be made for the presence of undetected
errors.

In some cases data sets were combined, as when samples
from different field seasons had been analysed in differ-
ent laboratories (Table 1). This raised a special problem
because, although each data set had been scrutinized for
error, there was still a possibility that single samples from
a given individual would be scored differently between
the data sets. Therefore, it was necessary to repeat the
error-checking prototcol, scrutinizing all pairs of similar
genotypes between data sets. This approach mandates that
laboratories share raw data and samples to facilitate data
scrutiny and selective reanalysis. It also means that sam-

ples which have passed careful scrutiny in previous years
may fall under fresh scrutiny as new samples, with poten-
tially similar genotypes, are added to a data set.

Detailed records of the nature of every error detected
were kept for the 17 most-recent projects (Table 2). Errors
were broadly classified as scoring errors — in which the
numbers recorded in the database were not consistent with
the appearance of the raw data — and amplification errors —
where the raw data had an appearance that would reason-
ably cause an experienced worker to record a genotype
that was incorrect. Amplification errors (Taberlet 

 

et al

 

.
1996; Gagneux 

 

et al

 

. 1997) were broken down into allelic
dropout (the amplification of only one allele in a hetero-
zygote) and false amplification, although the former was far
more common in our experience. In the 17 projects where
we kept records, there were 222 1MM-pairs prior to, and 30
1MM-pairs following, error-checking. This means that the
identification of 192 spurious individuals was circumvented.
The number of 2MM-pairs decreased from 387 to 371.

In addition to the strict protocol outlined above, reana-
lysis was extended subjectively to other classes of samples,
or repeated multiple times, whenever any level of discom-
fort remained about the reproducibility of genotypes. This
final level of scrutiny was not codified, because the cir-
cumstances that can raise concerns vary greatly. The most
common cause for concern was when the absence of a single

Table 2 Numbers of errors detected by scrutiny or reanalysis of
pairs of similar genotypes. Only those projects for which ex-
haustive records were kept are listed. Of 109 amplification errors
(Amp.), 17 involved amplification of a false allele and 99 involved
allelic-dropout (seven samples suffered both amplification
problems in a single event)

Project Samples

Number of errors % Error 

Scoring Amp. Scoring Amp.

Apalachicola 247 1 11 0.4 4.5
Big Cypress 224 1 13 0.4 5.8
Bowron 193 2 6 1.0 3.1
Eglin 285 5 8 1.8 2.8
Hoopa 213 4 2 1.9 0.9
New Jersey 558 4 18 0.7 3.2
Ocala 1716 26 7 1.5 0.4
Oregon 84 10 4 11.9 4.8
Osceola 230 7 3 3.0 1.3
Parsnip B 571 27 3 4.7 0.5
Parsnip G 901 12 7 1.3 0.8
Purcell 168 3 5 1.8 3.0
St John’s 292 4 13 1.4 4.5
SW MT 318 3 1 0.9 0.3
Swan 361 1 5 0.3 1.4
Taku B 69 0 0 0.0 0.0
Taku G 208 7 3 3.4 1.4
Total or mean 6638 117 109 1.8 1.6
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allele at one or more loci was the only difference between
a pair of genotypes; a pattern that suggests allelic dropout.
If convincingly strong and clear results were not obtained
after several attempts at confirmation, the samples were
culled from the data set. Altogether, we culled 1279 samples
(13%) on the basis of quality, and 397 samples (4%) because
they appeared mixed (three or more alleles reproduced at
one or more loci), while we retained 8088 samples (83%).

 

Lack of power (too few individuals)

 

Errors happen

 

It is appropriate to state at the outset that errors do happen.
The first documented error that I heard about affected
the study described by Woods 

 

et al

 

. (1999), where two
individuals that were live-captured after completion of the
study were found to have identical genotypes for the
markers that were used in the inventory project. These two
individuals, which differed at other microsatellite markers
and had different genders, were subsequently tied back to
two, widely separated geographical clusters of non-
invasively collected hair samples (John Woods pers. comm.),
demonstrating that the laboratory analysis in the original
study had detected at least one too few individuals.

 

Distributions of similar genotypes

 

While anecdotal accounts can demonstrate that errors do
occur, they provide little insight into the frequency of such
errors. One cannot know the actual number of individuals
with identical genotypes (0MM-pairs) in noninvasive
inventory projects, but an examination of the distribution
of similar genotypes in those projects can narrow the
probable frequency of 0MM-pairs. Looking across all of the
projects listed in Table 1, there were 4774 3MM-pairs, 471
2MM-pairs and 36 1MM-pairs. These figures include
comparisons between individuals that were defined by
incomplete genotypes, and are inflated by the exclusion of
the gender data that were actually used in three projects
(Table 1). The slope of this distribution, with order of
magnitude differences at each step, suggests that no more
than a handful of 0MM-pairs are expected to be present in
these projects. Certainly it suggests that the mean number
of such errors per project was less than one.

 

Retrospective probing for errors

 

Of the 21 inventory projects (Table 1), the Ocala study is
arguably the most vulnerable to a lack of power, involving
at least 223 individuals that must be differentiated using
one of the least variable marker systems employed to date.
In this study, 76 of the 223 genetically defined individuals
were defined based on a genotype that was only observed

in a single sample, and were therefore not candidates for
errors caused by lack of power (such errors require the
same genotype to be associated with samples from two
individuals, and thus a minimum of two samples). We
searched the remaining 147 individuals for errors by
analysing gender for 418 of the 1640 samples that were tied
to these individuals, biasing sample selection towards
samples that were collected at different times and places.
Because even the closest relatives have an 

 

∼

 

50% chance of
having different genders, this gender analysis should
detect ∼50% of cases where samples from two real indi-
viduals were lumped together in the same genetically defined
individual. This test failed to identify any instances
where samples with the same multilocus microsatellite
genotype were scored as having different genders. While
not an exhaustive test, these results demonstrated that
errors caused by lack of power were not causing a dramatic
underestimate of the number of individuals sampled, even
in a project whose power was at the lower end of our allow-
able range (they also confirmed the reproducibility of the
gender analysis).

Tests with known individuals

Unlike data from genetically defined individuals, gen-
etic data from physically captured individuals can be
examined directly for matching genotypes (e.g. Waits et al.
2001). I had access to five large collections of known
individual bears (Table 3). In two cases, results were
available for eight markers (Paetkau et al. 1998), so the
analysis was performed by using data from the six, least-
variable markers. For the other three collections, the only
data that were available were from the markers that were
used in the associated inventory projects (Table 1). Five-
locus data were also selected from each of these collections,
choosing the most variable markers available in an attempt
to produce systems with similar variability to those used in
the applied five-locus projects (Table 1).

Searches for matching genotypes in these five collections
identified two cases where two known individuals had
matching six-locus genotypes, and five cases where five-
locus genotypes were held in common between individuals
(Table 3). The single case (New Jersey, five loci) where
more than one would-be-error (0MM-pair) was found in a
single collection of individuals had more 1MM-pairs (48)
than all 21 inventory projects combined (36: Table 1), demon-
strating that the power present in this test system was
much lower than the power of the marker systems that had
been applied in practice (and illustrating how rapidly
power falls off with variability). These collections of
known individuals are similar in size to some of the larger
inventory projects, indicating that even large projects can
be expected to encounter very few 0MM-pairs when using
our methods. Because power requirements are proportional
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to the square of the number of individuals that need to be
resolved [number of pairs = n/2*(n − 1), where n is the
number of individuals sampled], these data provide strong
evidence that the majority of the small (n < 100) projects
listed in Table 1 are expected to include zero 0MM-pairs
(errors).

Matches between known relatives

Reasoning that siblings are typically more difficult to
differentiate than parent–offspring pairs, and making a
rough guess at the number of first-order relatives in their
study, Woods et al. (1999) decided that a conservative
approach to match declarations was to use a sibling match
probability, and to require that this match probability be
below 5% for the data held in common between two
samples before those samples could be declared to come
from the same individual (note that larger studies, with
their exponentially higher power requirements, would
require more stringent critical values to maintain similar
rates of error, although no formal method was proposed
for setting such values).

An interesting feature of the Western Brooks Range
study (Table 3) is that many first-order relatives were
known (Craighead et al. 1995). When the 30 pairs of similar
(0MM- + 1MM- + 2MM-pairs; Table 3) six-locus geno-
types that were found in this group of individuals were
sorted by known relationship, six of 26 known sibling pairs
(23%) were found to have similar genotypes, while six of 90
known parent–offspring pairs (7%) had similar genotypes,
and 18 of 10 615 pairs of unknown relationship (0.16%)
were similar (this last value is inflated because there were
undoubtedly unidentified pairs of first-order relatives
among the pairs of unknown relationship).

These data provide an empirical demonstration that,
while first-order relatives constitute the extreme minority

of pairs of individuals, they may represent the majority of
the challenge in terms of genetically distinguishing all
individuals; a validation of Woods et al.′s (1999) approach
of focusing on close relatives. To put it differently, a marker
system that has sufficient power to resolve a small number
of close relatives will have sufficient power to resolve a
very large number of nonrelatives (Waits et al. 2001).

How variable must markers be?

The marker systems that we used were selected based on
fairly subjective guidelines. However, it is now possible to
examine the power of these marker systems, and re-
evaluate these guidelines objectively. The frequencies of
0MM-pairs and 1MM-pairs are poor measures of power
(the former because it is unknown, the latter because it is
too small to be measured accurately), so the proportion of
pairs of individuals that matched at all but two markers
(number of 2MM-pairs/total number of pairs) was sel-
ected as a measure of power. In the interest of consistency,
comparisons were limited to genetically defined indi-
viduals for which complete data were available for the
selected markers, excluding the < 2% of individuals that
were defined on incomplete genotypes (Table 1).

The comparison of marker variability (HE) and power
demonstrated that slight changes in variability have a large
affect on power (Fig. 1). The question is, where is the threshold
beyond which more markers should be employed? One
would expect that the arguments for the location of this
threshold would focus on match probabilities. However,
while the preceding sections have demonstrated that we
had sufficient power to differentiate the overwhelming
majority of individuals, inadequate variability expressed
itself in several projects through the error-checking
aspect of the protocol, which dictates that 2MM-pairs be
scrutinized for possible error. When too many 2MM-pairs

Table 3 The number of similar or identical (0MM) pairs of five- or six-locus genotypes in five collections of known (physically captured)
individual bears. If these were DNA-based inventory projects, the number of 0MM-pairs would be unknown, and the number of
individuals sampled would be underestimated by this number

Markers (number: names) HE n

Pairs of genotypes

0MM 1MM 2MM

W. Brooks Range 6: G10B, G10X, G10C, G1A, G10M, G10L 0.73 148 1 2 27
Richardson Mts 6: G10M, G10B, G1A, G10C, G10X, G10L 0.72 119 0 5 29
Ocala 6: G1A, G1D, G10H, MU59, G10B, MU50 0.71 126 0 2 36
New Jersey 6: G10P, G10L, MU50, G10J, MU59, G1D 0.76 292 1 10 85
Hoopa 6: G10J, MU59, G10H, G10L, G10M, G10P 0.78 98 0 0 1
W. Brooks Range 5: G1D, G10P, G10B, G10X, G10C 0.78 148 1 9 71
Richardson Mts 5: G1D, G10P, G10M, G10B, G1A 0.81 119 1 6 23
Ocala 5: G1A, G1D, G10H, MU59, G10B 0.73 126 0 14 98
New Jersey 5: G10P, G10L, MU50, G10J, MU59 0.77 292 3 48 225
Hoopa 5: G10J, MU59, G10H, G10L, G10M 0.80 98 0 0 12
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are present in a project, the required scrutiny of 2MM-pairs
can be a more onerous task than analysing an extra marker
from the outset. In other words, a set of markers that keeps
2MM-pairs at a low enough frequency for our error-checking
protocol to be practical will also keep 0MM-pairs (errors)
to an acceptable level.

Based on this practical experience with error-checking,
I suggest that small projects (n < 100) are feasible with a
minimum HE of 0.69 or 0.78, for six- or five-locus systems,
respectively, but that these minimums should rise to
an HE of 0.75 or 0.83, respectively, for large projects
(200 < n < 400). These thresholds correspond to expected
2MM-pair frequencies of approximately 0.005 for small
projects, or 0.002 for large projects (Fig. 1). To illustrate the
logic underlying these choices, consider a project that pro-
duces genotypes for samples from 200 individuals. In such
a project, there would be 19 900 (200*199/2) pairs of indi-
viduals to compare and, assuming a marker system with a
2MM-pair frequency of 0.005, the estimated number of
2MM-pairs would be 99.5 (0.005*19 900). While scrutiniz-
ing 100, 2MM-pairs is not unmanageable, it is approaching
the point where the work required to analyse an extra
marker for all samples might be offset completely by the
resulting reduction in the number of 2MM-pairs that
required scrutiny.

The single seven-locus project (Fig. 1) had much higher
power than would have been expected if we had used six
markers in this population, but the rapid decline in power
that is seen with falling variability suggests that many
markers may be required to produce adequate power in
populations with low variability. This can be illustrated by
another empirical example. Eight-locus data are available
for a small number (n = 34) of known, individual brown
bears from Kodiak Island (Paetkau et al. 1998). While
power requirements are comparatively trivial with a data

set of this size, this insular population is characterized by
low variability (HE = 0.27). Comparisons of these 34
genotypes revealed eight 0MM-pairs and 127 1MM- or
2MM-pairs. In such a data set, the number of individuals
sampled would be underestimated — a problem that
would worsen exponentially with increased n — and the
approach of scrutinizing pairs of similar genotypes on a
case-by-case basis would be less efficient than simply
reproducing the entire data set (a multiple tubes approach).
There will clearly be cases where DNA-based popu-
lation inventories are rendered impractical by low genetic
variability.

An interesting implication of these recommendations
for marker variability is that, because logistical concerns
impose greater constraints on variability than match prob-
abilities, the sibling match statistic (Woods et al. 1999) has
been rendered functionally obsolete; it effectively never
produces values above 5% when incomplete genotypes are
culled according to our guidelines.

Genotyping errors (too many individuals)

Assumptions in the protocol

Our error-checking protocol relies on two assumptions:
that errors are effectively never present at more than two
markers in a single sample, and that the chance of making
the same errors at multiple markers in multiple samples
from the same individual is negligible. This amounts to an
assumption that errors occur reasonably independently
between markers — such that the rate of two-locus errors
is the square of the rate of single-locus errors — and
reasonably independently between samples — such that
the probability of the same error(s) being made in two
samples is the square of the probability of the error(s) being
made in a single sample. Using the data that we recorded
on errors, we can look at the independence of errors and, if
we are convinced that the error-checking protocol has been
effective in detecting most errors, learn something about
the frequency and nature of the errors that are made.

This discussion ignores another source of error that
could be caused by inaccurate genotyping, which is when
samples are taken from individuals with very similar geno-
types (1MM or 2MM), and when genotyping errors cause
those genotypes to be recorded as identical (0MM). For
such an error to occur, a pair of genotypes must be nearly
identical to begin with (Table 1 shows that this is unlikely),
the errors must affect the markers that differ between the
two genotypes, and no other markers, and the errors must
specifically convert the genotype of one individual to the
genotype of the other individual, and not to one of the dozens
of possible genotypes that typically exist. I consider this
combination of events to be vanishingly unlikely, and ignore
this type of error.

Fig. 1 Variability of the chosen marker system vs. power to
resolve individuals, as quantified through the proportion of pairs
of individuals with genotypes that match at all but two markers.
The 21 projects (Table 1) are separated by whether they employed
five (circles), six (squares) or seven (triangle) microsatellite
markers.
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Independence of errors between samples

We detected 210 cases where a single error was present in
the initial genotype that was recorded for a sample,
corresponding to about 3% of samples. If errors occur
independently between samples, and we consider a
case where an error has been made in one sample from
a particular individual, then we would expect the prob-
ability of an identical error in a second sample from the
same individual to be: the probability that the second
sample contains an error (0.03) ÷ the number of markers
where that error could take place (usually six) ÷ the
number of different possible errors that could be made
at the affected locus (a great many, although some errors,
such as failure to amplify an allele, would be relatively
common). A reasonable guess might be that an error would
be exactly reproduced in 1/1000th of samples from the
same individual as was affected by the initial error.

There were 178 unreplicated, single-locus errors in the
studies that we documented (Table 4), and we had a mean
of 3.1 samples per individual across these projects. With
these numbers, one might not expect to see any cases
where the same error was repeated in multiple samples
from the same individual. Contrary to this expectation, we
found that 32 of the samples with single-locus errors were
involved in 14 cases where a particular erroneous geno-
type was replicated exactly in multiple samples from the
same genetically defined individual. In other words, errors
are not independent between multiple samples from the
same individual.

Looking at the source of the replicated error, we see that
13 of 14 cases involved scoring errors, and that in 12 of
these cases the errors affected two or more samples that
were analysed on the same run. In these cases, a single
technical problem went undetected, or a single oversight
was made, that affected a series of adjacent samples in the
same way. To illustrate, the two replicated errors that
occurred in the Oregon project were caused by a malfunc-
tioning climate control system that cooled the room to the
point where the relative mobility of G10H was affected,

causing peaks to fall outside the categories that we had
defined for this marker using Genotyper software. When
the technician scored this run manually, she shifted over
by one allele [2 base pairs (bp)] on the first sample, and
maintained that shift through a whole series of adjacent
samples. As the relative values of adjacent genotypes
appeared correct, the person who checked the scoring
failed to notice the 2 bp shift in the absolute value of allele
scores. While the circumstances that give rise to errors are
many and varied, a perfect knowledge and execution of
established laboratory protocols would have prevented
these scoring errors.

Independence of errors between markers

Turning to the independence of errors between markers
(within a single sample), we can once again use the
observed rate of single-locus errors (0.03) to estimate
that the chance of a sample being affected by two errors
would be about 1 in 1000 (0.032). We had 6638 samples
that were good enough to be assigned to individuals
(Table 2), so we might have expected to see about six cases
where data from two markers were incorrect for a single
sample. The observed number of such cases was 16,
suggesting less than perfect independence of errors
between markers.

Once again, a look at the nature of the observed double
errors provides a quick explanation for the apparent lack of
independence. In most cases the double errors involved
allelic dropout, and involved samples that failed to pro-
duce full genotypes on the first pass (i.e. marginal sam-
ples). This suggests that the rate of amplification error is a
function of sample quality (Taberlet et al. 1996; Gagneux
et al. 1997; Morin et al. 2001), and that the excess of double
errors can be explained by a relatively higher rate of errors
in low quality samples.

The observed rate of amplification error differed con-
siderably between projects (Table 2). It is normally difficult
to compare sample quality between projects, because study
designs, climate and storage conditions vary between
projects. However, these variables were relatively constant
for a series of studies of neighbouring black bear popula-
tions in Florida. When the observed rate of amplification
error was compared to a measure of sample quality (mean
number of guard hair roots available for extraction), a clear
trend was observed (Fig. 2); low sample quality increases
the rate of error.

If sample quality affects rate of error, then an easy way
to control error is to exclude low quality samples. Unfortu-
nately, the relationship between the quantity of material
that is available (e.g. number of guard hair roots) and the
quality of genetic results is quite loose in our experience,
presumably because of variation in sample condition. For
example, a sample with abundant material could be of

Table 4 Number of errors detected in the 17 inventory projects
listed in Table 2, categorized by the number of markers affected,
and whether the errors were unique, or were exactly replicated in
another sample with the same ultimate genotype. Errors in the
cells marked ‘unk.’ cannot be detected by our protocol, and go
uncorrected

No. of markers Unique Replicated Total

1 178 32 (14 events) 210
2 16 unk. ≥ 16
> 2 unk. unk. unk.
Total ≥ 194 ≥ 32 ≥ 226
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poor quality if it spent 2 weeks outdoors in wet conditions.
Our experience is that the best way to exclude error-prone
samples is to be very conservative when assigning high-
confidence genotypes during the initial analysis, and to
cull marginal samples according to our guidelines (see
Methods). Note that prescreening methods, whether based
on use of a single, robust microsatellite marker (see Meth-
ods), or whether based on quantitative PCR of another
marker (Morin et al. 2001), do not affect the application of
our protocol, although they do reduce the number of
samples that are expected to be culled during multilocus
genotyping, thereby increasing efficiency when a large
proportion samples are of low quality.

How are we doing?

While the two previous sections have argued that the
main assumptions underlying the error-checking protocol
are violated, for practical purposes we are interested only
in whether the degree of these violations is sufficient to
result in data sets that contain a significant number of
undetected errors. Our error-checking protocol is blind
to certain classes of errors, and the conclusion that one
draws about the reliability of our results comes down to
one’s estimate of the values in the cells marked ‘unk’ in
Table 4. As noted previously, confirmation of 1MM-
pairs averted the definition of 192 spurious individuals,
compared to the 16 such errors that were avoided by
checking a much larger number of 2MM-pairs. A nearly
identical ratio was observed between unique errors
and replicated errors. A direct extrapolation from these
trends would produce an estimate of three undetected
errors in total. However, recognizing the risk of extra-
polation, and wishing to err on the side of caution, a safe
estimate is that undetected errors averaged less than one
per project (i.e. the sum of cells marked ‘unk’ in Table 4 is
< 17). This level of residual genotyping error is probably

trivial compared to more mundane sources of error, such
as mislabelling sample envelopes in the field, and certainly
won’t have a large impact on mark–recapture estimates of
abundance.

The main limitation with the conclusion of low genotyp-
ing error rates is that it is specific to the type of samples col-
lected in the projects under consideration (Table 1). Unlike
the conclusions concerning resolving power, which are
based on match probabilities, genotyping error rates are
expected to vary with the quality of DNA that one man-
ages to collect, such that the reliability of the described
methods cannot be considered proven for samples such as
scat or shed hair.

Redundancy

The preceding sections have focused on data from
observed errors, but a different line of reasoning that
provides a general sense of error rates takes advantage of
sampling redundancy. Given the variability of the marker
systems that we use, and the low rate at which replicated
errors are observed, a match in genotypes between two
samples can be taken as strong evidence that those two
samples are from the same individual, and that neither
genotype contains errors. This reasoning is of little value in
projects where many samples have unique genotypes, but
in some projects there are dozens of samples with the same
genotype, giving tremendous confidence that the observed
genotype is correct (or at least reproducible).

The best example of this is the Ocala project, in which
99% (1573 of 1590) of noninvasively collected hair samples
(that were not culled) produced genotypes that were
observed in one or more other samples from that popu-
lation. When such a large proportion of the data have
been replicated in this way, it becomes hard to imagine a
scenario in which these data are riddled with genotyping
error. While this logic cannot be applied in projects with
less redundant sampling, the methods that are applied are
consistent across projects, so the reassurance provided
though this reasoning can be extrapolated to other projects,
at least to the extent that those projects share the relatively
high sample quality (low rate of amplification error;
Table 2) observed in the Ocala study.

Signals of error: heterozygote deficit

While I have argued that it is possible to keep genotyping
errors to a low frequency, it is useful to identify signs that
may be indicative of undetected genotyping errors.
Because allelic dropout is the most common single class of
error that we encounter, differences between HO (observed
heterozygosity) and HE can be used to identify a wide-
spread failure to amplify both alleles in heterozygous geno-
types. Looking at the 21 inventory projects (Table 1), mean

Fig. 2 Proportion of samples in which amplification errors were
detected as a function of sample quality (quantity of material
available for DNA extraction) in six projects run by the Florida
Fish and Wildlife Conservation Commission (Table 1).
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HE was 0.7560; effectively indistinguishable from the HO
of 0.7565. As allelic dropout was detected in 1.6% of samples
(Table 2), there would have been a larger difference
between HO and HE prior to error-checking.

Another example comes from examining the mean HO of
the single-locus genotypes that were scored with high con-
fidence (3-digit numbers) for samples that were ultimately
culled. HO in these rejected samples was 0.51; fully 25%
below expectation. This large deficit of heterozygotes,
apparently affecting one in three heterozygous genotypes,
indicates that the overall rate of genotyping error is vastly
higher than the values reported in Table 2, but that most of
the errors occur in samples that are culled before error-
checking takes place. This supports the earlier argument
that error rates depend heavily on sample quality, and
emphasizes the value of removing low-quality samples
from a project at the earliest possible stage.

An obvious limitation of heterozygote deficit is that the
deficit becomes large, and thus statistically detectable, only
when the error rate is high. Another difficulty with using
heterozygote deficit to detect allelic dropout is that the
same indicator results from the presence of nonamplifying
(null) alleles (albeit, only at the affected loci; Callen et al.
1993), and from Wahlund effects (Wahlund 1928). Wahlund
effects may be seen when study areas are much larger than
the dispersal capacity of the study animal, such that the
assumption of random mating, which underlies the
calculation of HE, is violated. Similarly, there is little reason
for inventory projects to eschew markers with a few null
alleles, because the accuracy of genotypes is far less import-
ant to inventory projects than the reproducibility of geno-
types. Notwithstanding these limitations, checking for
heterozygote deficit is merited because it requires little
effort, and can provide reassurance that allelic dropout is
not rampant.

Other signals of genotyping error

Another indirect indicator of genotyping problems is
the ratio of 2MM- to 1MM-pairs, which we found to be
> 10 after error-checking. Because most errors occur in
isolation, they create 1MM-pairs. In many of our studies,
1MM-pairs outnumbered 2MM-pairs prior to error-
checking, providing a clear and routinely observable
indicator of a data set with quality problems.

A final resource for confirming data quality is for the
participants in the project who have an expert knowledge
of the ecology of the study species, or of the field data or
the mark–recapture analysis, to ensure that the genetic
data are consistent with this knowledge. For example, do
the ‘capture’ locations and times for a given genetically
defined individual exceed the reasonable movement
capacity of the study species? Or do the gender results
obtained in the lab correspond to known genders from

live-captured animals whenever the microsatellite geno-
type indicates a match with such an animal?

Another example that has been observed on several
occasions (John Boulanger pers. comm.) is that data sets
which have not been heavily scrutinized (i.e. contain a
number of errors) are flagged for closure violation by
goodness-of-fit testing of the mark–recapture model.
Closure violation normally refers to individuals who are
not present in the study area during all capture sessions,
and thus have a capture probability of zero in some sessions
(e.g. Boulanger & McLellan 2001), but this phenomenon
is mimicked when a spurious individual is defined based
on a genotyping error, and thus has no chance of recap-
ture. When these data sets were subsequently scrutinized
and errors were removed, the apparent closure violation
disappeared.

Training and supervision

An examination of Table 2 highlights an area of major
concern; that rates of scoring error (human error) can
fluctuate wildly between projects. In several cases, the
frequency of scoring errors rose above 2% of samples, and
when this happened it could always be traced to
insufficient training and supervision of new technical staff.
It is my opinion that the potential for DNA-based
inventory projects to go badly wrong does not lie in the
technical details that form the bulk of this manuscript, but
in underestimating the amount of skill, knowledge and
diligence that supervisors must transfer to their staff to
enable those workers to generate data files containing
thousands of error-free allele scores.

Effective use of resources

I have argued that the number of errors present in the
projects listed in Table 1 is very small, but probably not
zero. An important point to remember is that many
estimates of abundance are compromised by very large
confidence intervals (e.g. Boulanger et al. in press);
sometimes of a magnitude that is similar to that of the
estimate itself. Faced with this reality, and with finite
budgets, there is a limit to the amount of energy which can
responsibly be invested in searching for errors. At some
point, the reductions in bias that can be brought about
through reduced error are trivial in comparison to the
increase in precision that could be achieved through
diverting energy into increasing the sample size. If residual
errors are present at the frequency that I am suggesting,
then our ultimate understanding of the number of animals
in the study populations will be improved more through
the analysis of additional samples (i.e. increasing pre-
cision) than through searching for that last undetected
error that may or may not be lurking in a given data set.
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Conclusion

Noninvasive, DNA-based population inventories have
a proven record of providing high quality information
to wildlife managers. With the development of sample
collection techniques for a greater range of species I expect
the use of these methods to increase substantially, par-
ticularly in situations where physical capture is difficult
or undesirable. With DNA samples of the quality that were
available to the studies listed in Table 1, and with adherence
to a few basic principles, there is little reason to fear the
gain or loss of individuals in the laboratory. The relevant
principles include thorough training and dedicated
supervision of laboratory workers, selection of powerful
marker systems, systemization and automation of labor-
atory methods, early culling of low quality samples and
confirmation of similar pairs of genotypes. I believe that
the approach described here strikes an appropriate bal-
ance between maximizing the quantity and the quality of
data produced.
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Addendum

Subsequent to the preparation of this manuscript, a sample with
allelic-dropout at three markers was discovered in a project that is
not described here. As a result, we have added a category of sam-
ples to those scrutinized for errors: members of 3MM-pairs with
unique genotypes (found in just one sample) in which at least half
of single-locus genotypes are homozygous.
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